Enhancement of metal surface micro-jet by nanoscale helium bubbles under supported and unsupported shocks

Author:

Abstract

By using molecular dynamics, we have investigated the effect of nanoscale helium (He) bubbles on the formation of micro-jets and the various physical mechanisms under supported and unsupported shock wave loading. Our simulations suggest that the micro-jet is primarily influenced by the local dynamics of the nano-He bubbles, as the velocity of the shock wave in copper–helium (Cu–He) system is slightly slower than in pure Cu. The expansion of He bubbles can accelerate the velocity of the jet head, but this effect disappears during the released tensile stage. We categorize the behavior of nano-He bubbles into three types: Type A bubbles are in the micro-jet forming region, and their expansion increases the velocity and rupture of the jet. Type B bubbles are located between the micro-jets, and their compression and rapid bursting accelerate the free surface. Type C bubbles are situated far from the free surface and mainly affect the propagation of the shock wave and the released damage process. The global effects of the He bubble are similar under both supported and unsupported shock wave loading. However, the evolution of Type C He bubbles is significantly different under unsupported shock wave loading, with pressure-atom volume and density attenuated to zero and temperature reduced to the initial temperature due to the strong tensile effect. Overall, our study has revealed the differences in the evolution process of He bubbles and their dynamic effects during the formation of micro-jets under different compressed and released paths.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3