Non-reflective hard source method for multiple physically extended sources and scattering bodies

Author:

Lamonaca Frida1ORCID,Petris Giovanni1ORCID,Cianferra Marta1ORCID,Armenio Vincenzo1ORCID

Affiliation:

1. Dipartimento di Ingegneria e Architettura, Università di Trieste , Piazzale Europa 1, Trieste 34127, Italy

Abstract

In this paper, we focus on methodologies to inject a noise source in a numerical model of noise propagation in confined domains. This is a problem of primary importance when dealing with propagation of fluid-dynamic induced noise in confined basins, like ships at sea or wind farms. We first assess the performance of the literature hard source (HS) and transparent source methods; successively, we propose a novel method named the non-reflective HS (NRHS) method. It takes advantage of the linearity of the equation governing the propagation of acoustic waves in fluids and is based on the decomposition of the total signal in the sum of direct and reflected signals. It presents the advantages of the hard source method removing the main drawback consisting of the well-known problem of spurious reflections. To check the reliability of the HS vs the NRHS, a non-dimensional parameter (the encumbrance) has been defined, which gives a measure of the extension of the generation domain with respect to the propagation domain in relation to the principal wavelength of the acoustic waves and the presence of reflecting surfaces. The method herein developed gives accurate results in the case of a single-point source, where the literature methods behave well; more importantly, the NRHS method maintains its own accuracy when a noise source needs to be represented by a large number of points in space, situations of very practical importance where the standard methods may exhibit inaccuracy. This is a point of importance since the use of large generation domains is in favor of the accuracy of the source characterization, which can exhibit a complex directivity. The new method has been tested in a number of archetypal situations characterized by the presence of a reflecting plane, a scattering body close to the source location, and two sources placed side by side. In all cases, the method has shown its own superiority with respect to the standard HS method, still preserving the flexibility and simplicity of the latter.

Funder

Ministero dell'Università e della Ricerca

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3