Flexible thin film optical solar reflectors with Ta2O5-based multimaterial coatings for space radiative cooling

Author:

Xiao Wei12ORCID,Dai Peng2ORCID,Singh H. Johnson1ORCID,Ajia Idris A.1,Yan Xingzhao3,Wiecha Peter R.4ORCID,Huang Ruomeng2ORCID,de Groot C. H. (Kees)2ORCID,Muskens Otto L.1ORCID,Sun Kai12ORCID

Affiliation:

1. School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton 1 , Southampton SO17 1BJ, United Kingdom

2. Electronics and Computer Science, Faculty of Engineering and Physical Sciences, University of Southampton 2 , Southampton SO17 1BJ, United Kingdom

3. Optoelectronics Research Centre, Zepler Institute for Photonics and Nanoelectronics, Faculty of Engineering and Physical Sciences, University of Southampton 3 , Southampton SO17 1BJ, United Kingdom

4. LAAS-CNRS, Université de Toulouse 4 , 31000 Toulouse, France

Abstract

Optical Solar Reflectors (OSRs) combine low solar radiation absorption (α) and high broadband infrared emissivity (ε) and are applied to the external surface of spacecraft for its thermal management. Bulk glass OSR tiles are the incumbent, but ultra-lightweight and thin-film flexible OSR coatings are raising considerable interest for both space and terrestrial radiative cooling applications. In this work, a genetic algorithm combined with a transfer matrix method is used for the design and optimization of multimaterial thin-film OSRs for broadband radiative cooling. The algorithm simultaneously optimizes the spectral performance of the OSR at two parts of the wavelength spectrum, solar (0.3–2.5 μm) and thermal infrared (2.5–30 μm). The designed optimized OSR structure consists of 18 alternating layers of three materials, SiN, SiO2, and Ta2O5, on top of an Al mirror backreflector, with a total thickness of only 2.088 μm. The optimized multilayer stack contributes distributed Bragg reflections that reduce the residual solar absorption below that of an uncoated Al mirror. The optimized OSR is demonstrated experimentally on a 150 mm (6 in.) Si wafer and on a flexible polyimide substrate using a production level reactive sputtering tool. The fabricated thin film OSR shows good thermal-optical property with α = 0.11 and ε = 0.75 and achieves a net cooling power of 150.1 W/m2 under conditions of one sun total solar irradiance in space. The ultrathin coating fabricated using hard inorganic materials facilitates its integration onto flexible foils and enables large-scale manufacture of low-cost OSRs for broadband radiative cooling applications.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3