Quantum dots: Another choice to sensitize organic transformations

Author:

Ye Chen1ORCID,Zhang De-Shan12ORCID,Chen Bin1ORCID,Tung Chen-Ho1,Wu Li-Zhu12ORCID

Affiliation:

1. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, People's Republic of China

2. School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Photochemical reactions are among the most important reactions in both theoretical studies and practical applications, since they utilize photon energy as the primary driving force. The sensitizer species is the key component connecting photons and the chemical materials of the reaction, which is conventionally among organic dyes or metal complex molecules. Semiconductor quantum dots (QDs), widely used in optoelectronic materials, and fluorescence sensing can be also applied to organic transformations due to their inherent physical and chemical properties. The similar functionalities and special photophysical features make QDs an ideal sensitizer and promote the efficient progress of the photochemical reactions. Moreover, the booming of QD photocatalysis reveals the excellent potential of interdisciplinary development between nano-materials science and organic chemistry QDs. Hence, a systematical explanation of the reaction principle of QDs in photocatalytic processes is necessary. In this review, we analyze the structural and optical properties of the QDs and illustrate how QDs participate in and facilitate organic reactions belonging to different pathways. We also present an outlook on the development of QD photocatalysis.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

the Strategic Priority Research Program of the Chinese Academy of Science

the Key Research Program of Frontier Science of the Chinese Academy of Science

Publisher

AIP Publishing

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3