Computational insights and phase transition of ruthenium alloy by classical molecular dynamics simulations

Author:

Mariam Afira1ORCID,Choe Seungho1ORCID

Affiliation:

1. Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) , Daegu 42988, Republic of Korea

Abstract

Understanding the mechanism of metal solidification holds both theoretical significance and practical importance. In this study, we conducted molecular dynamics simulations to investigate the impact of cooling rates on the solidification of a melted ruthenium alloy using the embedded atom method (EAM) potential. The EAM potential is a widely employed interatomic potential for describing the metallic system, which can capture numerous crucial properties, including mechanical properties, the energy of competing crystal structure dynamics, defects, and liquid structures. Our simulations showed that upon quenching with different cooling rates, the system transformed into a supercooled liquid state at 1200 K, and a hexagonal close-packed cluster emerged as a dominant structure that remained stable even in the supercooled state. A critical cooling rate (1011 K/s) marked the transition from crystal to amorphous phase; this transition exhibited an upward trend as the superheating temperature increased until it reached the maximum achievable cooling rate. Our simulations also revealed that the optimal conditions for undercooling and superheating occur at ∼0.4396 and 1.2893 Tm, respectively, where Tm is the melting temperature. Our results provide comprehensive insights into the evolution of melt structures with changing temperatures during deep undercooling, the formation of homogeneous melt-free crystal regions, and the effect of the molten state on solidification phenomena.

Funder

Daegu Gyeongbuk Institute of Science and Technology

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3