Affiliation:
1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract
Compressible flows are numerically simulated using hyperbolic conservation laws. This study proposes a modified fifth-order weighted essentially non-oscillatory (WENO) scheme with a relatively low dissipation and high resolution for hyperbolic conservation laws. This scheme exhibits good performance when solving complex compressible flow fields containing strong discontinuities and smooth microstructures. A simple local smoothness indicator and an eighth-order global smoothness indicator are introduced to improve the accuracy. Furthermore, we construct a new optimal coefficient, which can be adaptively adjusted with different states of the flow field. It no longer depends on the grid spacing. This adaptive coefficient not only reduces dissipation while improving the resolution but also prevents negative dissipation and effectively suppresses spurious numerical oscillations. The proposed scheme attains a higher accuracy at high-order critical points than three classical WENO schemes. Moreover, analysis of the approximate dispersion relation indicates that the proposed scheme provides good dispersion and dissipation properties compared with other WENO schemes. Finally, several standard numerical experiments are performed to demonstrate the enhanced performance of the proposed scheme. The numerical results indicate that the present scheme has a low dissipation, high resolution, and good stability to capture both smooth and discontinuous structures.
Funder
National Natural Science Foundation of China
Beijing Institute of Technology Research Fund Program for Young Scholars
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献