Affiliation:
1. FMN Laboratory, Bauman Moscow State Technical University 1 , Moscow 105005, Russia
2. Dukhov Automatics Research Institute, (VNIIA) 2 , Moscow 127055, Russia
3. Institute for Theoretical and Applied Electromagnetics RAS 3 , Moscow 125412, Russia
Abstract
At the present time, ultrahigh performance superconducting nanowire single-photon detectors are the key elements in a variety of devices from biological research to quantum communications and computing. Accurate tuning of superconducting material properties is a powerful resource for fabricating single-photon detectors with desired properties. Here, we report on the major theoretical relations between ultrathin niobium nitride (NbN) film properties and superconducting nanowire single-photon detector characteristics, as well as the dependence of ultrathin NbN film properties on reactive magnetron sputtering recipes. Based on this study, we formulate the exact requirements for ultrathin NbN films for ultrahigh performance superconducting nanowire single-photon detectors. Then, we experimentally studied the properties of ultrathin NbN films (morphology, crystalline structure, critical temperature, and sheet resistance) on silicon, sapphire, silicon dioxide, and silicon nitride substrates sputtered with various recipes. We demonstrate ultrathin NbN films (obtained with more than 100 films deposition) with a wide range of critical temperature from 2.5 to 12.1 K and sheet resistance from 285 to 2000 Ω/sq and report a sheet resistance evolution of more than 40% within two years. Finally, we found out that one should use ultrathin NbN films with a specific critical temperature near 9.5 K and a sheet resistance of about 350 Ω/sq for ultrahigh performance state-of-the-art superconducting nanowire single-photon detectors at 1550 nm wavelength.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献