Boundary layer transition induced by low-speed synthetic jets

Author:

Palumbo Andrea1ORCID,Semeraro Onofrio2ORCID,Robinet Jean-Christophe3ORCID,de Luca Luigi4ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy

2. LISN, Université de Paris-Saclay, CNRS, 91400 Orsay, France

3. DynFluid Laboratory, Arts et Métiers ParisTech, 151 Bd. de l'Hopital, 75013 Paris, France

4. Department of Industrial Engineering, University of Naples “Federico II,” 80125 Naples, Italy

Abstract

The effect of low-speed, circular synthetic jets (SJ) on the turbulent transition of a laminar boundary layer is studied through direct numerical simulations. The SJ capability in fixating the streamwise location of transition onset is analyzed in terms of its operation parameters (reduced frequency F+ and momentum coefficient [Formula: see text]). The effect of free-stream turbulence (FST) on the near-wall vortical structures generated by the synthetic jet is analyzed as well, to mimic the actual operation of the control system. Velocity spectra, phase portraits, and dynamic mode decomposition allow us to investigate flow unsteadiness and transition to a chaotic state. In most of the investigated cases, SJs successfully promote transition, as the result of varicose-symmetric hairpin-like vortices generated at the jet exits. In particular, it is found that increasing the momentum coefficient always reduces the size of the laminar region; a non-monotonic behavior of the laminar fetch is noted as the reduced frequency is increased, suggesting the existence of an optimal frequency value. Combination of FST and SJ actuation results in spanwise-asymmetric vortical structures, with little difference in the location of the transition onset as compared to the previous case. The present analysis can be used to gather information on the practical implementation of low-speed SJ actuators as active turbulators.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3