Settling behavior of polydisperse droplets in homogeneous isotropic turbulence

Author:

Abstract

The settling behavior of polydisperse droplets in homogeneous and isotropic turbulence was measured by an ultra-high-resolution two-dimensional Particle Image Velocimetry. The aim of the present study is to provide new insight on the dependence of multi-scale particle settling behavior on characteristic parameters of two-phase turbulent flow via a sophisticate conditional analysis. The relative settling strength (defined as the ratio of mean droplet settling velocity to root mean square velocity of turbulence), whose effect on droplet settling behavior is of the primary interest, ranges as SvL=0.5–2.0. The turbulence Taylor Reynolds number is Reλ=200–300, and the droplet Stokes number is Stp=0.1–10. Voronoï analysis is performed to obtain the concentration field of discrete droplets from particle images. Particle structures including clusters or voids are detected, and the droplet settling velocities corresponding to various probing conditions, such as Stp, local particle concentration, and size of particle structures, were then analyzed. For the present configuration (droplet net sedimentation), there is a non-monotonic dependency of the settling velocity on local particle concentration. The negative correlation between them occurs in the moderate-concentration sub-regime and is insensitive to the variation of SvL, in which individual droplets interact with turbulent flow independently. It can be well explained by the commonly invoked preferential sweeping mechanisms. On the other hand, the dense-concentration regime, in which droplets prefer to accumulate into clusters, presents a positive correlation; namely, the conditional-averaged settling velocity decreases with the increase in local particle concentration. In this sub-regime, it is not the scale of single particles but the scale of particle clusters and the relative strength of turbulence (measured by SvL) that jointly determines the droplet settling behavior. Such a process, to our knowledge, is consistent with the so-called multi-scale preferential sweeping effect.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3