Affiliation:
1. Department of Chemistry, University of Rome La Sapienza, p.le A. Moro 5, I-00185 Rome, Italy
Abstract
The AuTi gaseous molecule was for the first time identified in vapors produced at high temperature from a gold–titanium alloy. The homogeneous equilibria AuTi(g) = Au(g) + Ti(g) (direct dissociation) and AuTi(g) + Au(g) = Au2(g) + Ti(g) (isomolecular exchange) were studied by Knudsen effusion mass spectrometry in the temperature range 2111–2229 K. The so determined equilibrium constants were treated by the “third-law method” of thermodynamic analysis, integrated with theoretical calculations, and the dissociation energy at 0 K was derived as [Formula: see text] (AuTi) = 241.0 ± 5.2 kJ/mol. A similar investigation was carried out for the AuSc and AuFe species, whose dissociation energies were previously reported with large uncertainties. The direct dissociation and the isomolecular exchange with the Au2 dimer were studied in the 1969–2274 and 1842–2092 K ranges for AuSc and AuFe, respectively, and the dissociation energies derived as [Formula: see text] (AuSc) = 240.4 ± 6.0 and [Formula: see text] (AuFe) = 186.2 ± 4.2 kJ/mol. The experimental bond energies are compared with those calculated here by coupled cluster with single, double, and perturbative triple excitations with the correlation-consistent basis sets cc-pVXZ(-PP) and cc-pwCVXZ(-PP) (with X = T, Q, 5), also in the limit of complete basis set, and with those from complete active space self-consistent field-multi-reference configuration interaction calculations, recently available in the literature. The stronger bond of AuTi compared to AuFe parallels the trend observed in monochlorides. This analogy is shown to be more generally observed in the AuM and MCl diatomic series (with M = first row transition metal), in accordance with a picture of “pseudo-halogen” bonding behavior of gold.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献