Additive energy functions have predictable landscape topologies

Author:

Story Brittany12ORCID,Sadhu Biswajit34ORCID,Adams Henry15ORCID,Clark Aurora E.6ORCID

Affiliation:

1. Department of Mathematics, Colorado State University 1 , Fort Collins, Colorado 80523, USA

2. NIMBioS, University of Tennessee Knoxville 2 , Knoxville, Tennessee 37996, USA

3. Health Physics Division, Health Safety & Environment Group, Bhabha Atomic Research Centre 3 , Mumbai, India

4. Homi Bhabha National Institute 4 , Mumbai, India

5. Department of Mathematics, University of Florida 5 , Gainesville, Florida 32611, USA

6. Department of Chemistry, University of Utah 6 , Salt Lake City, Utah 84112, USA

Abstract

Recent work [Mirth et al., J. Chem. Phys. 154, 114114 (2021)] has demonstrated that sublevelset persistent homology provides a compact representation of the complex features of an energy landscape in 3 N-dimensions. This includes information about all transition paths between local minima (connected by critical points of index ≥1) and allows for differentiation of energy landscapes that may appear similar when considering only the lowest energy pathways (as tracked by other representations, such as disconnectivity graphs, using index 1 critical points). Using the additive nature of the conformational potential energy landscape of n-alkanes, it became apparent that some topological features—such as the number of sublevelset persistence bars—could be proven. This work expands the notion of predictable energy landscape topology to any additive intramolecular energy function on a product space, including the number of sublevelset persistent bars as well as the birth and death times of these topological features. This amounts to a rigorous methodology to predict the relative energies of all topological features of the conformational energy landscape in 3N dimensions (without the need for dimensionality reduction). This approach is demonstrated for branched alkanes of varying complexity and connectivity patterns. More generally, this result explains how the sublevelset persistent homology of an additive energy landscape can be computed from the individual terms comprising that landscape.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3