Mechanism study of the conductivity characteristics of cellulose electrical insulation influenced by moisture

Author:

Zhao Haoxiang1ORCID,Mu Haibao1ORCID,Zhang Daning1ORCID,Baumeier Björn23ORCID,Yao Huanmin1,Guo Guangzhi1,Zhang Guanjun1ORCID

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, China

2. Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands

3. Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract

Cellulose insulating paper is widely used in the power industry for its good electrical insulating properties. Moisture sharply increases its conductivity, which directly leads to the weakening of insulation performance and greatly increases the risk of subsequent electric field distortion and insulation breakdown. This paper focuses on the microscopic mechanism of moisture changing the characteristics of charge transport in cellulose insulation and attempts to reveal the related conductivity mechanism. To achieve this purpose, microscopic and macroscopic perspectives are integrated and several simulation and experimental methods are utilized comprehensively. The molecular dynamics simulation results showed that most water molecules in damped cellulose were individually and uniformly adsorbed on the hydroxyl groups by hydrogen bond, and the quantum chemistry computation results showed that the lowest unoccupied molecular orbital more appeared on the water molecule and the corresponding density of state increased. Then, experimentally, it was confirmed that the trap energy level decreased by the thermally stimulated current method. On this basis, the promotion effect of moisture on charge transport is predicted and verified by polarization and depolarization current methods. As the moisture content increased, more charge carriers escaped from the trap by hopping and participated in long-range continuous charge motion. Therefore, after dampness, the current of cellulose insulating paper increased exponentially with the increase in electric field strength, which was consistent with the hopping conductivity mechanism.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Research and Development Projects of Shaanxi Province

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3