Multivortex traveling waves for the Schrödinger map equation

Author:

Tianpei Guo1ORCID

Affiliation:

1. School of Mathematics and Statistics, Wuhan University , Wuhan 430072, China

Abstract

We construct traveling wave solutions for the Schrödinger map equation in R2. These solutions have n(n + 1)/2 pairs of degree ±1 vortices. The locations of those vortices are symmetric in the plane and determined by the roots of a special class of Adler–Moser polynomials. With a few modifications, a similar construction allows for the creation of traveling wave solutions of the Schrödinger map equation in R3. These solutions have the shape of 2n + 1 vortex rings, whose locations are given by a sequence of polynomials with rational coefficients and are far away from each other.

Publisher

AIP Publishing

Reference23 articles.

1. Topology and dynamics in ferromagnetic media;Physica D,1996

2. Vortex dynamics in two-dimensional antiferromagnets;Nonlinearity,1998

3. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies;Phys. Z. Sowjetunion,1935

4. Semitopological solitons in planar ferromagnets;Nonlinearity,1999

5. On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness;Nonlinear Anal.: Theory, Methods Appl.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3