Static structures and dynamic responses of polar topologies in oxide superlattices

Author:

Liu Junfu1ORCID,Liu Yiqian1ORCID,Lan Shun1ORCID,Yang Bingbing12,Dou Lvye1,Yang Letao1ORCID,Kong Xi1ORCID,Nan Ce-Wen1,Lin Yuan-Hua1

Affiliation:

1. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China

2. School of Physics and Materials Engineering, Hefei Normal University, Anhui 230601, People's Republic of China

Abstract

Polar topologies in ferroelectric/paraelectric superlattices have been an important substance to explore exotic physical properties. Although enormous efforts have been paid to this field, the universality of the formation of polar topologies in various superlattices and their electric field dynamics is still unknown. Herein, we employ a phase-field model to construct three types of ferroelectric/paraelectric superlattices with tetragonal, rhombohedral, and orthorhombic symmetries and investigate their static structures and dynamic responses as a function of epitaxial strain. It is found that all superlattices undergo a similar vortex–spiral–in-plane topology transition, which corresponds to peaked dielectric permittivity curves and ferroelectric-, antiferroelectric-, and paraelectric-like hysteresis loops. Such polarization behaviors are attributed to the triple-well free energy landscape. The flexibility of hysteresis loops generates high energy density and efficiency of ferroelectric/paraelectric superlattices. This study offers a systematic view of the generality of polar topologies in multilayered ferroelectrics.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3