Vibrational mode-specific polarization effect in circularly polarized stimulated Raman scattering

Author:

Li Yuhui1,Li Tao1,Yu Yuanqin1ORCID,Sun Jin1ORCID,Zhou Xiaoguo2ORCID,Zhang Rui1,Liu Shilin2ORCID

Affiliation:

1. Department of Physics, Anhui University, Hefei, Anhui 230601, China

2. Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei Anhui 230026, China

Abstract

As one of the popular coherent Raman scattering techniques, stimulated Raman scattering (SRS) has made significant progress in recent years, especially in label-free biological imaging. Polarization provides an additional degree of freedom to manipulate the SRS process. In previous studies, only linearly polarized SRS was fully investigated, in which both pump and Stokes laser fields are linearly polarized. Here, we theoretically analyzed the SRS process excited by two circularly polarized laser fields and then experimentally demonstrated it by taking a spherical symmetric CH4 molecule as a model system. The experimental results are in good agreement with the theoretical ones. It is shown that circularly polarized SRS (CP-SRS) has unique characteristics different from linear polarization. When the handedness of circular polarization states of two laser fields is the same, CP-SRS further suppresses the depolarized vibrational band while keeping the polarized band almost unaffected. On the other hand, when the handedness is opposite, CP-SRS enhances the depolarized band while suppressing the polarized band. Therefore, the CP-SRS not only allows us to resolve the symmetry of vibrational modes but also can enhance vibrational contrast based on symmetry selectivity by suppressing or enhancing the signal from a specific vibrational mode. These results will have potential applications in improving chemical selectivity and imaging contrast as well as spectral resolution SRS microscopy. In addition, the CP-SRS has the ability to determine the depolarization ratio ρ and identify the overlapping Raman bands.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3