Affiliation:
1. Department of Space Science and Engineering, National Central University, Taoyuan City 320, Taiwan
2. Department of Physics, National Central University, Taoyuan City 320, Taiwan
Abstract
Electrostatic solitary waves (ESW) and solitons are widely observed nonlinear plasma phenomena in various space environments, which may be generated by the electron streaming instability as shown in many particle simulations. The predicted electron holes associated with the ESW, however, are not observed by the recent high resolution spacecraft. This raises a possibility for the ion acoustic solitons being the potential candidate, which are described by the Sagdeev potential theory with hot electrons and cold ions being treated by the kinetic equilibrium and fluid models, respectively. The assumption of [Formula: see text] adopted in the theoretical models for ion acoustic solitons, however, imposes a great constraint for the space applications considering that [Formula: see text] may vary in a wide range of 0.1–10 in the Earth's space environments. This paper examines the effect of [Formula: see text] on ion acoustic solitons by including a finite temperature in the fluid equations for the ions, which, however, can no longer be solved based on the standard Sagdeev potential method. It is shown based on the nonlinear theory that larger [Formula: see text] may result in larger propagation speeds and the critical flow velocity for the existence of steady solitons increases with increasing [Formula: see text] values. The nonlinear solutions for various [Formula: see text] values may be characterized by an effective Mach number. For [Formula: see text] ≫ 1 the hot ions and cold electrons shall be described by the kinetic and fluid models, respectively, which may result in negative electric potentials opposite to the standard ion acoustic solitons. Comparisons between the model calculations and observations are made.
Funder
Ministry of Science and Technology, Taiwan
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献