Dynamics of vapor bubble condensation under directional ultrasonic actuation

Author:

Boziuk Thomas R.1ORCID,Smith Marc K.1ORCID,Glezer Ari1

Affiliation:

1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , 771 Ferst Drive NW, Love Building Room 212, Atlanta, Georgia 30332, USA

Abstract

Direct-contact condensation of vapor bubbles injected into a subcooled liquid is enhanced using ultrasonic O(1 MHz) acoustic actuation. In the absence of actuation, the surface tension-driven pinch-off process of the vapor bubble from the injection orifice induces a liquid spear that travels upward through the bubble and ruptures the top interface to form a toroidal bubble. Similarly, the acoustic actuator produces a narrow high-intensity acoustic beam that deforms the top interface of the vapor bubble via radiation pressure to form a liquid spear that travels downward though the bubble and ruptures the bottom interface to form a toroidal bubble. Comparisons between the growth and collapse of vapor bubbles in these two cases were performed using high-speed video imaging and particle image velocimetry. The results show that the actuated bubble collapsed about 35% faster than the unactuated bubble. The flow fields around the bubbles induced by the motion of the liquid spears are similar in both cases. By comparing vapor bubbles under different subcooling conditions with an unactuated, noncondensing air bubble, it was shown that condensation at the liquid–vapor interface strongly influences bubble collapse times and the velocity field surrounding each of the bubbles and that these effects increase as the level of subcooling increases.

Funder

George W. Woodruff School of Mechanical Engineering

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3