Affiliation:
1. Rowland Institute, Harvard University , Cambridge, Massachusetts 02142, USA
Abstract
Inspired by the energy-saving character of group motion, great interest is directed toward the design of efficient swarming strategies for groups of unmanned aerial/underwater vehicles. While most of the current research on drone swarms addresses controls, communication, and mission planning, less effort is put toward understanding the physics of the flow around the members of the group. Currently, a large variety of drones and underwater vehicles consist of non-lifting frames for which the available formation flight strategies based on lift-induced upwash are not readily applicable. Here, we explore the V-formations of non-lifting objects and discuss how such a configuration alters the flow field around each member of the array compared to a solo flyer and how these changes in flow physics affect the drag force experienced by each member. Our measurements are made in a water tunnel using a multi-illumination particle image velocimetry technique where we find that in formations with an overlap in streamwise projections of the members, all the members experience a significant reduction in drag, with some members seeing as much as 45% drag reduction. These findings are instrumental in developing generalized energy-saving swarming strategies for aerial and underwater vehicles irrespective of the body shapes.