Turbulent droplet breakage in a von Kármán flow cell

Author:

Ravichandar Krishnamurthy1ORCID,Vigil R. Dennis2ORCID,Fox Rodney O.2ORCID,Nachtigall Stephanie3,Daiss Andreas3ORCID,Vonka Michal3,Olsen Michael G.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA

2. Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA

3. BASF SE, Ludwigshafen am Rhein, Germany

Abstract

Droplet dispersion in liquid–liquid systems is a crucial step in many unit operations throughout the chemical, food, and pharmaceutic industries, where improper operation causes billions of dollars of loss annually. A theoretical background for the description of droplet breakup has been established, but many assumptions are still unconfirmed by experimental observations. In this investigation, a von Kármán swirling flow device was used to produce homogeneous, low-intensity turbulence suitable for carrying out droplet breakage experiments using optical image analysis. Individual droplets of known, adjustable, and repeatable sizes were introduced into an isotropic turbulent flow field providing novel control over two of the most important factors impacting droplet breakage: turbulence dissipation rate and parent droplet size. Introducing droplets one at a time, large data sets were gathered using canola, safflower, and sesame oils for the droplet phase and water as the continuous phase. Automated image analysis was used to determine breakage time, breakage probability, and child droplet size distribution for various turbulence intensities. Breakage time and breakage probability were observed to increase with increasing parent droplet size, consistent with the classic and widely used Coulaloglou–Tavlarides breakage model (C–T model). The shape of the child drop size distribution function was found to depend upon the size of the parent droplet.

Funder

BASF

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3