Nuclear wave-packet-propagation-based study of the electron-coupled, proton-transfer process in the charge-transfer state of FHCl exhibiting three electronic states in full-dimensional space

Author:

Ariyageadsakul Pinit1ORCID,Baeck Kyoung Koo1ORCID

Affiliation:

1. Department of Chemistry, Gangneung-Wonju National University, Gangneung, Gangwon-do 25457, Republic of Korea

Abstract

The charge-transfer (CT) excited state of FHCl (F+H–Cl), generated by the photodetachment of an electron from its precursor anion (FHCl) by a photon energy of ∼9.5 eV, is a realistic prototype of two bidirectional-coupled reaction pathways, namely the proton-transfer (PT) and electron-transfer (ET) channels, that produce F + HCl and FH + Cl combinations, respectively. The early-time dynamics of the CT was studied via the time-dependent propagations of nuclear wave packets comprising three nonadiabatically coupled electronic states defined within a three-dimensional space. The detailed analyses of the early-time dynamics revealed an interesting phenomenon in which the onset of PT was ∼80 fs earlier than that of ET, indicating that PT dominated ET in this case. A more significant finding was that the proper adjustment of the electronic-charge distribution for the onset of ET was obtained ∼80 fs after the onset of PT; this adjustment was mediated by the initial movement of the H atom, i.e., the F–H vibration mode. To avail experimental observables, the branching ratio, χ = PT/(PT + ET), and absorption spectrum generating the neutral FHCl molecule from its precursor anion were also simulated. The results further demonstrated the dependences of the χs and spectrum on the change in the initial vibration level of the precursor anion, as well as the isotopic substitution of the connecting H atom with deuterium, tritium, and muonium.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3