On the dissipation of conforming and discontinuous Galerkin schemes for the incompressible Navier–Stokes equations

Author:

Chen Xi1ORCID,Drapaca Corina2

Affiliation:

1. Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

2. Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

Abstract

In this paper, we improve the numerical performance of the classical conforming finite element schemes for the time-dependent incompressible Navier–Stokes equations by adding dissipation. This is a physics-inspired approach, and the dissipative terms are constructed through the discontinuity of numerical quantities across interior edges and, therefore, decouple the space and time discretizations when compared with the streamline-upwind Petrov–Galerkin for the time-marching methods. In particular, the order of h (edge diameter) in the dissipative terms is motivated by the energy stability and error equation associated with the unsteady problem. Furthermore, we point out that the added dissipation may also be viewed as an alternative for the grad-div stabilization from the physical approach in the unsteady problem. The added dissipation is naturally within the framework of the variational multiscale and thus could serve as implicit subgrid-scale models in large eddy simulations. Numerical experiments with a jump of the gradient are performed. In addition, we test the ideas with the discontinuous Galerkin formulations. Numerical results indicate that our suggested dissipation is helpful in reducing numerical errors and is competitive when compared with other conventional stabilization available in the literature. Finally, we show that the changes in the physical role of the same terms may significantly change their corresponding numerical behaviors through examples on the steady problems.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3