Silicon nitride electric-field poled microresonator modulator

Author:

Zabelich Boris1ORCID,Lafforgue Christian1ORCID,Nitiss Edgars1ORCID,Stroganov Anton2ORCID,Brès Camille-Sophie1ORCID

Affiliation:

1. Ecole Polytechnique Fédérale de Lausanne, Photonic Systems Laboratory (PHOSL) 1 , CH-1015 Lausanne, Switzerland

2. LIGENTEC SA 2 , EPFL Innovation Park, CH-1024 Ecublens, Switzerland

Abstract

Stoichiometric silicon nitride is a highly regarded platform for its favorable attributes, such as low propagation loss and compatibility with complementary metal-oxide-semiconductor technology, making it a prominent choice for various linear and nonlinear applications on a chip. However, due to its amorphous structure, silicon nitride lacks second-order nonlinearity; hence, the platform misses the key functionality of linear electro-optical modulation for photonic integrated circuits. Several approaches have been explored to address this problem, including integration with electro-optic active materials, piezoelectric tuning, and utilization of the thermo-optic effect. In this work, we demonstrate electro-optical modulation in a silicon nitride microring resonator enabled by electric-field poling, eliminating the complexities associated with material integration and providing data modulation speeds up to 75 Mb/s, currently only limited by the electrode design. With an estimated inscribed electric field of 100 V/μm, we achieve an effective second-order susceptibility of 0.45 pm/V. In addition, we derive and confirm the value of the material’s third-order susceptibility, which is responsible for the emergence of second-order nonlinearity. These findings broaden the functionality of silicon nitride as a platform for electro-optic modulation.

Funder

ERC

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3