Epitaxial mid-IR nanophotonic optoelectronics

Author:

Nordin L.1ORCID,Wasserman D.2ORCID

Affiliation:

1. Geballe Laboratory for Advanced Materials, Stanford University, Palo Alto, California 94305, USA

2. Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758, USA

Abstract

There are a range of fundamental challenges associated with scaling optoelectronic devices down to the nano-scale, and the past decades have seen significant research dedicated to the development of sub-diffraction-limit optical devices, often relying on the plasmonic response of metal structures. At the longer wavelengths associated with the mid-infrared, dramatic changes in the optical response of traditional nanophotonic materials, reduced efficiency optoelectronic active regions, and a host of deleterious and/or parasitic effects makes nano-scale optoelectronics at micro-scale wavelengths particularly challenging. In this Perspective, we describe recent work leveraging a class of infrared plasmonic materials, highly doped semiconductors, which not only support sub-diffraction-limit plasmonic modes at long wavelengths, but which can also be integrated into a range of optoelectronic device architectures. We discuss how the wavelength-dependent optical response of these materials can serve a number of different photonic device designs, including dielectric waveguides, epsilon-near-zero dynamic optical devices, cavity-based optoelectronics, and plasmonic device architectures. We present recent results demonstrating that the highly doped semiconductor class of materials offers the opportunity for monolithic, all-epitaxial, device architectures out-performing current state of the art commercial devices, and discuss the perspectives and promise of these materials for infrared nanophotonic optoelectronics.

Funder

Division of Electrical, Communications and Cyber Systems

Defense Advanced Research Projects Agency

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3