A novel method of hybrid plasma injection driven by the pulsed discharge of a metal–polytetrafluoroethylene-stacked capillary in high-pressure SF6

Author:

Li Xiaoang1ORCID,Zhang Ningbo1,Jiang Pan1ORCID,Xu Haitao1ORCID,Li Zhibing2,Zhang Ran2,Zhao Ke3,Zhang Qiaogen1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Institute of High Voltage Technology, Xi’an Jiaotong University, Xi’an 710049, China

2. Institute of High Voltage Technology, China Electrical Power Research Institute, Beijing 100192, China

3. Institute of High Voltage Technology, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 211103, China

Abstract

A reliable and repeatable triggering technology for a megavolt gap switch with a low working coefficient η is an urgent need and a research focus. In this study, a novel method of hybrid plasma injection (HPI) driven by pulsed discharge inside a capillary was first proposed. The HPI actuator adopted a metal–polytetrafluoroethylene (PTFE)-stacked capillary, in which severe ablation could generate a hybrid plasma containing gas and metal vapor ionized component ejected outward from the nozzle. The HPI actuator could perform repeatedly with an extremely strong plasma injection and triggering ability and, thus, provided a solution for megavolt ultrafast bypass switches (UFBPSs). The evolution and the trigger properties of the HPI actuator were investigated, and the influence of the stacked material (Al, Zn, and Sn) and its proportion (3/15, 7/15, and 10/15) was studied, followed by the performance degradation in multi-shot. It was found that stacking chemically active and low-ionization-energy aluminum in a proportion of 7/15 strongly enhanced the HPI, with an initial velocity of 1200 m/s and a maximum height of 7.5 cm in 0.5 MPa SF6. In repeated operations, the HPI actuator performance degraded obviously due to capillary expansion and deformation, and the lifetime was tens of magnitude. Finally, the optimized HPI actuator was used to trigger a 7 cm–0.5 MPa SF6 gap, with a breakdown voltage of ∼1.5 MV. When a 100 kV DC voltage was applied ( η < 7%), the gap was successfully and continuously triggered for 27 shots with the trigger delay ranging from 301 to 670 µs, indicating that the HPI actuator could effectively and repeatedly trigger megavolt-magnitude SF6 gaps at a very low η and was a good solution for megavolt UFBPSs.

Funder

China National Funds for Distinguished Young Scientists

Science and Technology Foundation of State Grid Corporation of China

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3