Performance and emission characteristics of CI engine using hydrogen enrichment in biodiesel blend with additives—A review

Author:

Mehra Deepalika1ORCID,Kumar Vijay1ORCID,Choudhary Akhilesh Kumar1ORCID,Awasthi Mamta2ORCID

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology 1 , Hamirpur 177005, India

2. Centre for Energy Studies, National Institute of Technology 2 , Hamirpur 177005, India

Abstract

It is an irresistible argument that there is a requirement for sustainable resources for energy production as there is an enormous rise in demand for energy. Various sectors involve a wide range of energy consumption shares. Conventional fuels are exhaustible and can be replaced with sustainable substitutes, i.e., biofuels including bio-ethanol, biogas, and biodiesel. Recently, biodiesel has gained popularity due to the availability and affordability of feedstock. To extract biodiesel from vegetable oils, the transesterification process is widely used. Biodiesel blends can be used as a direct substitute in diesel engines, which may result in a slight reduction in hydrocarbons, carbon monoxide, and an increase in oxides of nitrogen. The performance parameters may increase or decrease depending on the blend type and calorific value. The objective of this review is to analyze the performance and emission characteristics of second and third-generation biodiesel blends enriched with hydrogen and to explore techniques for improvement such as the addition of additives. Research has shown that the addition of hydrogen improves combustion, resulting in increased brake thermal efficiency and reduced brake specific fuel consumption. Similarly, the inclusion of additives can reduce the production of oxides of nitrogen during combustion. In conclusion, biodiesel blends enriched with hydrogen and additives can offer improved performance, combustion, and emission characteristics. To meet energy demand sustainably and reduce reliance on conventional fuels, further research is necessary to ensure the long-term viability of biodiesel as a sustainable energy source.

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3