Effect of anode channel shape and wettability on CO2 bubble evolution in direct methanol fuel cells

Author:

Osman Sameer12ORCID,Ahmed Mahmoud13ORCID

Affiliation:

1. Department of Energy Resources Engineering, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt

2. Mechanical Power Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt

3. Department of Mechanical Engineering Assiut University, Assiut 71516, Egypt

Abstract

Active direct-methanol fuel cells operate on a liquid supply of reactants to the anode flow channels. Gaseous carbon dioxide is produced during operation forming large bubbles on the top side of diffusion layer, limiting the transport of reactants to the functional layer. This causes a significant drop in the rate of reaction and therefore limits the maximum current density. To collect CO2 bubbles away from the diffusion layer, a new design is proposed. It includes a degassing channel placed at the top of the main trapezoidal anode channel. The wettability of the degassing channel and the dihedral angle of the anode channel are investigated. To assess the effect of these parameters, a three-dimensional, two-phase flow model is developed and numerically simulated. Results show that adding the degassing channel is advantageous in terms of bubble collection. A trapezoidal main channel achieves a significantly higher rate of bubble actuation compared to a rectangular channel. In addition, using a dihedral angle of 20° causes a decrease in the pumping pressure, which reduces pumping losses. Moreover, a contact angle of 100° for the degassing channel provides the best compromise in terms of actuation rate, extraction rate out of the channel, and pressure drop along the channel. However, degassing channels can yield up to three times longer bubbles, which are around 75% slower. These findings create the opportunity to improve the performance of direct-methanol fuel cells by enhancing/optimizing the mass transport of reactants on the anode side.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3