Analysis of overdispersion in airborne transmission of COVID-19

Author:

Chaudhuri Swetaprovo1ORCID,Kasibhatla Prasad2,Mukherjee Arnab1,Pan William3,Morrison Glenn4,Mishra Sharmistha5,Murty Vijaya Kumar67

Affiliation:

1. Institute for Aerospace Studies, University of Toronto, Toronto, Ontario M3H 5T6, Canada

2. Nicholas School of Environment, Duke University, Durham, North Carolina 27710, USA

3. Global Institute of Health, Duke University, Durham, North Carolina 27710, USA

4. Gilligs School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, USA

5. Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario M5S 3H2, Canada

6. Fields Institute for Research in Mathematical Sciences, Toronto, Ontario M5T 3J1, Canada

7. Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada

Abstract

Superspreading events and overdispersion are hallmarks of the COVID-19 pandemic. However, the specific roles and influence of established viral and physical factors related to the mechanisms of transmission, on overdispersion, remain unresolved. We, therefore, conducted mechanistic modeling of SARS-CoV-2 point-source transmission by infectious aerosols using real-world occupancy data from more than 100 000 social contact settings in ten US metropolises. We found that 80% of secondary infections are predicted to arise from approximately 4% of index cases, which show up as a stretched tail in the probability density function of secondary infections per infectious case. Individual-level variability in viral load emerges as the dominant driver of overdispersion, followed by occupancy. We then derived an analytical function, which replicates the simulated overdispersion, and with which we demonstrate the effectiveness of potential mitigation strategies. Our analysis, connecting the mechanistic understanding of SARS-CoV-2 transmission by aerosols with observed large-scale epidemiological characteristics of COVID-19 outbreaks, adds an important dimension to the mounting body of evidence with regard to airborne transmission of SARS-CoV-2 and thereby emerges as a powerful tool toward assessing the probability of outbreaks and the potential impact of mitigation strategies on large scale disease dynamics.

Funder

Canadian Institutes of Health Research

Canada Research Chairs

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3