Linear stability of natural convection in a differentially heated shallow cavity submitted to high-frequency horizontal vibrations

Author:

Medelfef Abdessamed1ORCID,Henry Daniel2ORCID,Kaddeche Slim3ORCID,Mokhtari Faiza1,Bouarab Samia4ORCID,Botton Valéry2ORCID,Bouabdallah Ahcene1

Affiliation:

1. Laboratoire de Thermodynamique et Systèmes Energétiques, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediène 1 , BP 32, 16111 Bab Ezzouar, Alger, Algeria

2. Laboratoire de Mécanique des Fluides et d'Acoustique, CNRS, Université de Lyon, Ecole Centrale de Lyon/Université Lyon 1/INSA Lyon, ECL 2 , 36 Avenue Guy de Collongue, 69134 Ecully Cedex, France

3. Laboratoire de Recherche Matériaux, Mesures et Applications LR-11-ES-25, Institut National des Sciences Appliquées et de Technologie 3 , BP 676, 1080 Tunis Cedex, Tunisia

4. Université M'hamed Bougara 4 , Avenue de l'indépendance, 35000 Boumerdès, Algeria

Abstract

This study concerns the linear stability of buoyant convection induced by lateral heating inside a shallow cavity. It highlights the effects caused by submitting the flow to horizontal high-frequency vibrations. The steady-state profiles are first derived using a parallel flow approximation and studied for two types of boundaries, either thermally insulating or thermally conducting. The basic flow is found to be attenuated when subjected to horizontal high-frequency vibrations, with a faster decay in the case of thermally insulating walls than in the case of thermally conducting walls. The effects of vibrations and thermal boundary conditions are then investigated for various types of instability that may arise in such a situation, depending on the Prandtl number, such as shear, oscillatory, and thermal instabilities. It is observed that horizontal high-frequency vibrations have a stabilizing effect on all instabilities developing in such a situation and that this stabilization is generally more efficient in the case of insulating walls, for which the basic flow is attenuated more rapidly. We finally analyze the physical mechanisms that trigger these instabilities through fluctuating energy budgets at the critical thresholds.

Funder

Campus France

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3