Numerical investigation of the influence of surface wettability on water entry of spheres

Author:

Abstract

The water-entry problem is a complex multiphase hydrodynamic problem that is directly related to many engineering applications and natural phenomena, such as torpedo airdrops, seaplane landings, and ship slamming. Therefore, studying the influence of the microscopic properties of the object surface on the macroscopic phenomenon during water entry is necessary. In this study, the volume of fluid model and continuum surface force models are coupled to establish a multiphase flow numerical method for the water entry of objects considering surface wettability. The effect of surface wettability on the evolution of the cavity, multiphase flow-field structure, and hydrodynamic force characteristics are analyzed in detail. The results show that the movement of liquid film formed on the surface of the sphere at the early stage is the key to the formation of the cavity. For hydrophobic spheres, the liquid film separates near the equator of the sphere, and air enters it to form a cavity. At the moment of pinch-off, the pressure in the lower cavity increases, which generates a force that pushes the sphere to accelerate the fall, and this force is higher for spheres with a smaller density ratio. The flow-field structure shows that both rotational and shear effects play a dominant role in the evolution of the flow field in the cavity. For hydrophilic spheres, the liquid film follows the contact line along the surface of the sphere and converges at the top to form an upward jet.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3