Lightweight stiffness-dominated acoustic metamaterial barrier for low-frequency sound

Author:

Nagami Tadashi1ORCID,Miura Susumu2ORCID,Miyakawa Takayuki1ORCID,Sawada Hiroyuki1ORCID,Minami Kenta3ORCID,Ichikawa Atsushi2ORCID,Horibe Norifumi4ORCID,Enomoto Toshio1ORCID,Fang Nicholas X.5ORCID

Affiliation:

1. Advanced Engineering Division, Advanced Vehicle Performance Engineering Department, Nissan Motor Co., Ltd. 1 , 1-1, Morinosato-aoyama, Atsugi, Kanagawa 243-0123, Japan

2. Research Division, Advanced Materials and Processing Laboratory, Nissan Motor Co., Ltd. 2 , 1, Natsushima, Yokosuka, Kanagawa 237-8523, Japan

3. Research Division, Prototype and Test Department, Nissan Motor Co., Ltd. 3 , 1, Natsushima, Yokosuka, Kanagawa 237-8523, Japan

4. Advanced Engineering Division, Technology Planning Department, Nissan Motor Co., Ltd. 4 , 1-1, Morinosato-aoyama, Atsugi, Kanagawa 243-0123, Japan

5. Department of Mechanical Engineering, Massachusetts Institute of Technology 5 , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

Abstract

In this study, we experimentally demonstrate a class of lightweight acoustic metamaterial barriers that block low-frequency sound. The acoustic metamaterial barrier is composed of a thin rubber membrane coated over a stiff honeycomb plate. Our findings, combined with high-fidelity finite element simulations, demonstrate that the sound insulation performance of the acoustic metamaterial surpasses the mass law in three distinct frequency ranges: (a) the stiffness law dominates insulation up to 140 Hz, (b) degeneracy and destructive superposition of high-order natural modes dominate within the frequency range of 300–500 Hz, and (c) destructive interference between high-order resonance and membrane resonance dominates in the frequency range of 800–1200 Hz. Notably, our study highlights the potential of high-order shear vibration of the periodic structure for the resonant bending waves of the honeycomb cell that coincide with the wavelengths of longitudinal sound waves in air, thereby offering new design guidelines for lightweight acoustic metamaterial barriers. This study reports for the first time the coincidence of high-order and membrane resonance modes within the honeycomb cell by employing an accurate finite element model and experimental validation.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3