Concave polymer brushes inwardly grafted in spherical cavities

Author:

Milchev Andrey1ORCID,Petkov Peicho2ORCID

Affiliation:

1. Institute of Physical Chemistry, Bulgarian Academy of Sciences 1 , 1113 Sofia, Bulgaria

2. Sofia University St. Kliment Ohridski, Faculty of Physics 2 , Sofia, Bulgaria

Abstract

The structure and scaling properties of inwardly curved polymer brushes, tethered under good solvent conditions to the inner surface of spherical shells such as membranes and vesicles, are studied by extensive molecular dynamics simulations and compared with earlier scaling and self-consistent field theory predictions for different molecular weights of the polymer chains N and grafting densities σg in the case of strong surface curvature, R−1. We examine the variation of the critical radius R*(σg), separating the regimes of weak concave brushes and compressed brushes, predicted earlier by Manghi et al. [Eur. Phys. J. E 5, 519–530 (2001)], as well as various structural properties such as the radial monomer- and chain-end density profiles, orientation of bonds, and brush thickness. The impact of chain stiffness, κ, on concave brush conformations is briefly considered as well. Eventually, we present the radial profiles of the local pressure normal, PN, and tangential, PT, to the grafting surface, and the surface tension γ(σg), for soft and rigid brushes, and find a new scaling relationship PN(R)∝σg4, independent of the degree of chain stiffness.

Funder

European Cooperation in Science and Technology

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3