Machine learning assisted multifrequency AFM: Force model prediction

Author:

Elsherbiny Lamiaa1ORCID,Santos Sergio2ORCID,Gadelrab Karim3ORCID,Olukan Tuza1ORCID,Font Josep4ORCID,Barcons Victor4ORCID,Chiesa Matteo12ORCID

Affiliation:

1. Laboratory for Energy and NanoScience (LENS), Khalifa University of Science and Technology, Masdar Institute Campus 1 , 127788 Abu Dhabi, United Arab Emirates

2. Department of Physics and Technology, UiT-The Arctic University of Norway 2 , 9037 Tromsø, Norway

3. Department of Materials Science and Engineering, Massachusetts Institute of Technology 3 , Cambridge, Massachusetts 02139, USA

4. Industrial i TIC, UPC BarcelonaTech 4 Departament d'Enginyeria Minera, , 08242 Manresa, Spain

Abstract

Multifrequency atomic force microscopy (AFM) enhances resolving power, provides extra contrast channels, and is equipped with a formalism to quantify material properties pixel by pixel. On the other hand, multifrequency AFM lacks the ability to extract and examine the profile to validate a given force model while scanning. We propose exploiting data-driven algorithms, i.e., machine learning packages, to predict the optimum force model from the observables of multifrequency AFM pixel by pixel. This approach allows distinguishing between different phenomena and selecting a suitable force model directly from observables. We generate predictive models using simulation data. Finally, the formalism of multifrequency AFM can be employed to analytically recover material properties by inputting the right force model.

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3