Utilizing topological invariants for encoding and manipulating chiral phonon devices

Author:

Li Xiaozhe1ORCID,Long Yang2ORCID,Wang Tingting1ORCID,Zhou Yan1ORCID,Zhang Lifa1ORCID

Affiliation:

1. Phonon Engineering Research Center of Jiangsu Province, Ministry of Education Key Laboratory of NSLSCS, Center for Quantum Transport and Thermal Energy Science, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University 1 , Nanjing 210023, China

2. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University 2 , Singapore 637371, Singapore

Abstract

As a fundamental degree of freedom, phonon chirality is expected to promote the development of quantum information technology just like electron spin. Currently, central to this area is the realization of efficient transmission and control of chiral information. In this paper, we propose an approach by integrating topological theory, leveraging topologically invariant Chern numbers, to encode hexagonal lattice systems. Our investigation reveals the presence of topologically protected chiral interface states within the shared band gaps of both trivial and non-trivial system units. By precisely modulating the magnetic field distribution within the encoding system, we can effectively manipulate the topological pathways. Building upon this framework, we design and implement a chiral phonon three-port device. Through dynamic calculations, we demonstrate the transmission process of chiral information, showcasing the chiral phonon switching effect and logical OR operation. Our findings not only establish a fundamental mechanism for the manipulation and control of phonon chiral information but also provide a promising direction for research in harnessing chirality degrees of freedom in practical applications.

Funder

National Key Research and Development Program of China

Department of Science and Technology of Jiangsu Province

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3