Transport and modeling of subgrid-scale turbulent kinetic energy in channel flows

Author:

Inagaki Kazuhiro1ORCID,Kobayashi Hiromichi2ORCID

Affiliation:

1. Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan

2. Department of Physics and Research and Education Center for Natural Sciences, Hiyoshi Campus, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan

Abstract

To develop a more convenient subgrid-scale (SGS) model that performs well even in coarse grid cases, we investigate the transport and modeling of SGS turbulent kinetic energy (hereafter SGS energy) in turbulent channel flows based on the stabilized mixed model (SMM). In this paper, we try to increase the convenience of the SMM by replacing the modeled transport equation for the SGS energy with an algebraic model. The SMM quantitatively adequately predicts the total turbulent kinetic energy of the direct numerical simulation (DNS) even in coarse grid cases. For both the filtered DNS (fDNS) and large-eddy simulation (LES), the statistically averaged production term balances with the dissipation in the region away from the wall in the SGS energy transport equation. In contrast, we reveal that the correlation coefficient between the production and dissipation terms is high for the modeled transport equation in LES, whereas that for the fDNS is low. Based on the high correlation or local equilibrium between the production and dissipation observed in the LES, we demonstrate the reduction of the SMM into a zero-equation SMM (ZE-SMM). We construct a new damping function based on the grid-scale Kolmogorov length to reproduce the near-wall behavior of the algebraic model for the SGS energy. The ZE-SMM provides quantitatively the same performance as the original SMM that employs the SGS energy transport model. This result suggests that the local equilibrium model for the SGS energy provides the equivalent performance as the transport model in wall-bounded turbulent flows even in coarse grid cases.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3