Programmable morphing, electroactive porous shape memory polymer composites with battery-voltage Joule heating stimulated recovery

Author:

Lai-Iskandar S.12ORCID,Li W. H.13ORCID,Tsang S. H.4ORCID,Lee Y. H.2ORCID,Teo E. H. T.25ORCID

Affiliation:

1. Smart Small Satellite Systems Thales in NTU (S4TIN) Joint Laboratory, 50 Nanyang Avenue, Singapore 639798

2. School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

3. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

4. Temasek Laboratories@NTU, 50 Nanyang Avenue, Singapore 639798

5. School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

Abstract

Direct fabrication of electroactive shape memory polymer composites (eSMPCs) into complex non-planar geometries is highly desirable to enable remotely deployable, form-functional structures. However, traditional processes such as injection molding, casting, and extrusion limit the producible geometries to planar ribbons, wires, or tubes and the design of deployment modes to flattening-out/self-folding motions. To achieve low-voltage eSMPCs with a complex geometry, we report a direct fabrication strategy of bespoked-geometry eSMPCs via a two-stage sequential cure-and-foam technique for a new type of porous eSMPC, functionalized with 3D graphene nanofoam monolith (3DC). In our method, we resolved the difficulty in shaping fragile 3DC, and thus, various complex shape transforms (curved, helical, and wavy) can be intuitively designed via direct sculpting. Our method can be compatible with kirigami techniques for the design of hierarchical and combinatorial shape-change structures. 3DC not only serves as an intrinsic heater but, during synthesis, its cell walls also act as a confinement framework for architecting porosity within 3DC-eSMPCs, which can be actuated with low-voltage (7.5 V, <2 W). The herein reported 3DC-eSMPC and its synthesis strategy represent a new method and material to fabricate low-voltage deployables of bespoked shapes, capable of low-voltage actuation.

Funder

Thales Alenia Space S.p.A.

Singapore Economic Development Board ‒ Thales Solutions Asia Pte. Ltd. Joint Industrial Postgraduate Program

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3