Correlations between defect propensity and dynamical heterogeneities in supercooled water

Author:

Verde Alejandro R.1ORCID,Alarcón Laureano M.1ORCID,Appignanesi Gustavo A.1ORCID

Affiliation:

1. INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET , Avenida Alem 1253, 8000 Bahía Blanca, Argentina

Abstract

A salient feature of supercooled liquids consists in the dramatic dynamical slowdown they undergo as temperature decreases while no significant structural change is evident. These systems also present dynamical heterogeneities (DH): certain molecules, spatially arranged in clusters, relax various orders of magnitude faster than the others. However, again, no static quantity (such as structural or energetic measures) shows strong direct correlations with such fast-moving molecules. In turn, the dynamic propensity approach, an indirect measure that quantifies the tendency of the molecules to move in a given structural configuration, has revealed that dynamical constraints, indeed, originate from the initial structure. Nevertheless, this approach is not able to elicit which structural quantity is, in fact, responsible for such a behavior. In an effort to remove dynamics from its definition in favor of a static quantity, an energy-based propensity has also been developed for supercooled water, but it could only find positive correlations between the lowest-energy and the least-mobile molecules, while no correlations could be found for those more relevant mobile molecules involved in the DH clusters responsible for the system’s structural relaxation. Thus, in this work, we shall define a defect propensity measure based on a recently introduced structural index that accurately characterizes water structural defects. We shall show that this defect propensity measure provides positive correlations with dynamic propensity, being also able to account for the fast-moving molecules responsible for the structural relaxation. Moreover, time dependent correlations will show that defect propensity represents an appropriate early-time predictor of the long-time dynamical heterogeneity.

Funder

Consejo Nacional de Investigaciones Científicas y Técnicas

Agencia Nacional de Promoción Científica y Tecnológica

Universidad Nacional del Sur

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3