Self-tuning approach for metasurface-based resonators for one-to-many wireless power transfer

Author:

Smirnov Pavel1ORCID,Koreshin Eugene1ORCID,Baranov Georgii1ORCID,Kapitanova Polina1ORCID

Affiliation:

1. School of Physics and Engineering, ITMO University , Saint-Petersburg, Russia

Abstract

One-to-many wireless power transfer (WPT) is one of the leading directions in WPT systems development due to the rapid growth of consumer devices. The most challenging task is to ensure high efficiency for free-positioned receivers and provide low-cost compact WPT systems. In this paper, a transmitting metasurface-based resonator for one-to-many WPT systems is proposed and experimentally studied. The resonator design and matching method provides the self-tuning ability and allows to simplify the control and communication units of WPT systems. The resonator is composed of periodically arranged unit-cells, implemented as two crossed conductors separated by a thick substrate with a 330 pF capacitor mounted at the cross-hair of the conductors. The prototype of the proposed metasurface-based resonator is fabricated and experimentally studied for free-positioned single- and multi-receivers. The WPT efficiency to a free-positioned receiver varies from 19.7% to 84.8%. The overall efficiency for a three-receiver case reaches 83.2% which is suitable for one-to-many WPT systems.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3