Ambient formation of high pressure Ag2Si2O5 and non-stoichiometric Ag0.3Al0.7 alloy under confinement

Author:

Pramanik Subrata1ORCID,Mukhopadhyay Mrinmay Kumar2ORCID,Biswas Ripan Kumar13ORCID,Ghosh Jiten1,Datta Alokmay4ORCID

Affiliation:

1. Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute 1 , 196, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India

2. Surface Physics and Materials Science Division, Saha Institute of Nuclear Physics 2 , 1/AF Bidhannagar, Kolkata 700064, India

3. Research Institute for Sustainable Energy (RISE), TCG Centres for Research and Education in Science and Technology (TCG CREST) 3 , Sector V, Salt Lake, Kolkata 700091, India

4. Department of Physics, University of Calcutta 4 , 92, A.P.C. Roy Road, Kolkata 700009, India

Abstract

We report results of Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Analysis of X-rays (EDAX), X-ray Photoelectron Spectroscopy (XPS), X-ray Reflectivity (XRR), and X-ray Diffraction (XRD) and residual stress measurement studies of Ag-silica composite films on Al(001) co-deposited from precursors and spin-coated at different frequencies under ambient conditions. FESEM and EDAX show Ag nanoparticle formation, and XRD, XPS, and XRR show Ag0.3Al0.7 alloy and Ag-rich silicate Ag2Si2O5 formation in all samples. The alloy is non-stoichiometric and non-equilibrium, while the silicate forms at high oxygen pressure. XRR shows the presence of three layers, nanoparticles on top, silicate in the middle, and alloy at the bottom, on an Ag-doped Al substrate. Film thickness decreases exponentially with frequency. Individual layers increase in crystal domain size with a frequency of 3000 rpm when the silicate layer thins below unit cell thickness and the growth has a two-dimensional preference. Our results suggest total confinement by film thinning and local confinement from the Ag nanolayer. Residual stress measurements on the films deposited at 500 and 5000 rpms show a gradual increase in the tensile stress. The increase in spinning frequency reveals the formation of high pressure ambience.

Funder

Department of Atomic Energy, Government of India

Council of Scientific and Industrial Research, India

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3