Third-order less oscillatory and less diffusive compact stencil-based upwind schemes, and their applications to incompressible flows and free surface flows

Author:

Yokoi Kensuke1ORCID

Affiliation:

1. School of Engineering, Cardiff University, Cardiff CF24 3AA, United Kingdom

Abstract

We propose novel third-order less oscillatory and less diffusive compact stencil-based upwind schemes for the approximation of the continuity equation. The proposed schemes are based on the constrained interpolation profile-conservative semi-Lagrangian schemes. An important feature of the proposed schemes is that the interpolation functions are constructed using only variables within one upwind cell (a cell average and two boundary values). Furthermore, the proposed schemes have third-order accuracy and are also less oscillatory, less diffusive, and fully conservative. The proposed schemes are validated through various benchmark problems and comparisons with experiments of two droplets collision/separation and droplet splashing. The numerical results have shown that the proposed schemes have third-order accuracy for smooth solution, and capture discontinuities and smooth solutions simultaneously without numerical oscillations. The proposed schemes can capture the secondary vorticity of lid-driven cavity flow of Re = 7500 with a Cartesian grid of 64 × 64. The numerical results of two droplets collision/separation of We = 40 show that the proposed schemes can reproduce droplets collision/separation with quite coarse grids. These numerical results of droplet splashing have demonstrated that proposed schemes can reduce numerical diffusions well against existing schemes and robust.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3