Electric chiral magnonic resonators utilizing spin–orbit torques

Author:

Au Yat-Yin1ORCID

Affiliation:

1. University of Exeter Department of Physics and Astronomy, , Stocker Road, Exeter EX4 4QL, United Kingdom

Abstract

The recently proposed concept of electric chiral magnonic resonator (ECMR) has been extended to include usage of spin–orbit torques (SOT). Unlike the original version of ECMR which was based on voltage controlled magnetic anisotropy (VCMA), the spin wave amplification power by this new version of ECMR (pumped by SOT) no longer depends on the phase of the incident wave, which is highly desirable from an application point of view. The performance of the SOT pumped ECMR has been compared with the case of amplification by applying SOT pumping directly to a waveguide (without any ECMR involved). It is argued that at the expense of narrowing the bandwidth (i.e., slower amplifier response), the advantage of the former configuration (amplification by a SOT pumped ECMR) over the latter (amplification by direct SOT pumping the waveguide) is to offer gain, while at the same time, maintaining system stability (avoidance of auto-oscillations). Non-linear behavior of the SOT pumped ECMR has been analyzed. It is demonstrated that by cascading a SOT ECMR operating in an off-resonance mode together with a VCMA biased passive ECMR, it is possible to produce a magnonic neuron with a transmitted signal magnitude larger than the input in the firing state.

Funder

Engineering and Physical Sciences Research Council

UK Research and Innovation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3