Hot issue in health use topic modelling with LDA
Reference17 articles.
1. A. Bagheri, A. Sammani, P. V. Heijden, F. W. Asselbergs and D. L. Obserski. Automatic ICD-10 Classification of Diseases from Dutch Discharge Letters. Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies (pp. 281–289). Valletta, Malta: Scitepress. (2020)
2. S. Johnson. A Semantic Lexicon for Medical Language Processing. Journal of the American Medical Informatics Association, 205-218. (1999)
3. M. Z. Asghar, A. Khan, F. M. Kundi, M. Qasim, F. Khan, R. Ullah and I. U. Nawaz, I. U. Medical Opinion Lexicon: An Incremental Model For Mining Health Reviews. International Journal of Academic Research, 295 –302. (2014)
4. T. Dikiyanti, A. Rukmi and M. Irawan. Sentiment analysis and topic modelling of BPJS Kesehatan based on Twitter crawling data using Indonesian Sentiment Lexicon and Latent Dirichlet Allocation Algorithm. International Conference on Mathematics: Pure, Applied and Computation (ICOMPAC) 2020. Surabaya: IOP Publishing ltd. (2020)
5. A. F. Hidayatullah, W. Kurniawan and C. I. Ratnasari. Topic Modeling on Indonesian Online Shop Chat. NLPIR 2019: Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval (pp. 121–126). Tokushima - Japan: Association for Computing Machinery. (2019)