Electronic-state chaos, intramolecular electronic energy redistribution, and chemical bonding in persisting multidimensional nonadiabatic systems

Author:

Takatsuka Kazuo1ORCID,Arasaki Yasuki1ORCID

Affiliation:

1. Fukui Institute for Fundamental Chemistry, Kyoto University , 606-8103 Kyoto, Japan

Abstract

We study the chaotic, huge fluctuation of electronic state, resultant intramolecular energy redistribution, and strong chemical bonding surviving the fluctuation with exceedingly long lifetimes of highly excited boron clusters. Those excited states constitute densely quasi-degenerate state manifolds. The huge fluctuation is induced by persisting multidimensional nonadiabatic transitions among the states in the manifold. We clarify the mechanism of their coexistence and its physical significance. In doing so, we concentrate on two theoretical aspects. One is quantum chaos and energy randomization, which are to be directly extracted from the properties of the total electronic wavefunctions. The present dynamical chaos takes place through frequent transitions from adiabatic states to others, thereby making it very rare for the system to find dissociation channels. This phenomenon leads to the concept of what we call intramolecular nonadiabatic electronic-energy redistribution, which is an electronic-state generaliztion of the notion of intramolecular vibrational energy redistribution. The other aspect is about the peculiar chemical bonding. We investigate it with the energy natural orbitals (ENOs) to see what kind of theoretical structures lie behind the huge fluctuation. The ENO energy levels representing the highly excited states under study appear to have four robust layers. We show that the energy layers responsible for chaotic dynamics and those for chemical bonding are widely separated from each other, and only when an event of what we call “inter-layer crossing” happens to burst can the destruction of these robust energy layers occur, resulting in molecular dissociation. This crossing event happens only rarely because of the large energy gaps between the ENO layers. It is shown that the layers of high energy composed of complex-valued ENOs induce the turbulent flow of electrons and electronic-energy in the cluster. In addition, the random and fast time-oscillations of those high energy ENOs serve as a random force on the nuclear dynamics, which can work to prevent a concentration of high nuclear kinetic energy in the dissociation channels.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3