Fast evaluation of spherical harmonics with sphericart

Author:

Bigi Filippo12ORCID,Fraux Guillaume12ORCID,Browning Nicholas J.3,Ceriotti Michele12ORCID

Affiliation:

1. Laboratory of Computational Science and Modelling, Institute of Materials, École Polytechnique Fédérale de Lausanne 1 , Lausanne 1015, Switzerland

2. National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne 2 , 1015 Lausanne, Switzerland

3. Swiss National Supercomputing Centre (CSCS) 3 , 6900 Lugano, Switzerland

Abstract

Spherical harmonics provide a smooth, orthogonal, and symmetry-adapted basis to expand functions on a sphere, and they are used routinely in physical and theoretical chemistry as well as in different fields of science and technology, from geology and atmospheric sciences to signal processing and computer graphics. More recently, they have become a key component of rotationally equivariant models in geometric machine learning, including applications to atomic-scale modeling of molecules and materials. We present an elegant and efficient algorithm for the evaluation of the real-valued spherical harmonics. Our construction features many of the desirable properties of existing schemes and allows us to compute Cartesian derivatives in a numerically stable and computationally efficient manner. To facilitate usage, we implement this algorithm in sphericart, a fast C++ library that also provides C bindings, a Python API, and a PyTorch implementation that includes a GPU kernel.

Funder

National Center of Competence in Research Materials’ Revolution: Computational Design and Discovery of Novel Materials

Platform for Advanced Scientific Computing

European Research Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3