3D transient MHD simulation of DC breaking vacuum arc based on artificial current zero

Author:

Wang Lijun1ORCID,Zhang Zhefeng1ORCID,Chen Jieli1,Yang Ze1,Jiang Jing1,Wang Hongda1ORCID,Jia Shenli1ORCID

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China

Abstract

In the vacuum DC circuit breaker based on the artificial current zero, the change of arc luminosity delays the change of current value significantly in the fast current-zero stage. This phenomenon has impacts on the breaking capacity of the DC vacuum circuit breaker. Therefore, it is necessary to study the dynamic characteristics of the arc plasma under the above condition. In this work, a 3D transient magneto-hydro-dynamic model based on the commercial cup-type axial magnetic field (AMF) contact is established to study this phenomenon. The simulation results show that the fast current-zero stage is too short for the plasma to diffuse. The changes of the physical characteristics of the arc plasma lag the change of current value. Moreover, the magnetic field hysteresis caused by the eddy current on the electrode occurs in this stage, resulting in a continuous stronger AMF. It makes the distributions of the plasma uniform, while the diffusion of the arc plasma reduced at low currents, which is detrimental to the post-arc dielectric recovery stage. In addition, in the fast current-zero stage, the AMF near the contact slot is smaller than in other areas. This indicates that the slotting is effective in suppressing eddy currents and avoiding the negative effect of excessive AMF on plasma diffusion at this stage. The simulation results are consistent with the experimental results.

Funder

National Natural Science Foundation of China

State Key Laboratory of Electrical Insulation and Power Equipment

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference38 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3