Affiliation:
1. Dipartimento di Ingegneria Meccanica e Aerospaziale, Corso Duca degli Abruzzi 24, Politecnico di Torino, 10129 Torino, Italy
Abstract
The application of deep reinforcement learning (DRL) to train an agent capable of learning control laws for pulsed jets to manipulate the wake of a bluff body is presented and discussed. The work has been performed experimentally at a value of the Reynolds number [Formula: see text] adopting a single-step approach for the training of the agent. Two main aspects are targeted: first, the dimension of the state, allowing us to draw conclusions on its effect on the training of the neural network; second, the capability of the agent to learn optimal strategies aimed at maximizing more complex tasks identified with the reward. The agent is trained to learn strategies that minimize drag only or minimize drag while maximizing the power budget of the fluidic system. The results show that independently on the definition of the reward, the DRL learns forcing conditions that yield values of drag reduction that are as large as 10% when the reward is based on the drag minimization only. On the other hand, when also the power budget is accounted for, the agent learns forcing configurations that yield lower drag reduction (5%) but characterized by large values of the efficiency. A comparison between the natural and the forced conditions is carried out in terms of the pressure distribution across the model's base. The different structure of the wake that is obtained depending on the training of the agent suggests that the possible forcing configuration yielding similar values of the reward is local minima for the problem. This represents, to the authors' knowledge, the first application of a single-step DRL in an experimental framework at large values of the Reynolds number to control the wake of a three-dimensional bluff body.
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献