Self-interaction and transport of solvated electrons in molten salts

Author:

Pegolo Paolo1ORCID,Baroni Stefano12ORCID,Grasselli Federico3ORCID

Affiliation:

1. SISSA—Scuola Internazionale Superiore di Studi Avanzati 1 , 34136 Trieste, Italy

2. CNR—Istituto Officina dei Materiali, SISSA Unit 2 , 34136 Trieste, Italy

3. COSMO—Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne 3 , 1015 Lausanne, Switzerland

Abstract

The dynamics of (few) electrons dissolved in an ionic fluid—as when a small amount of metal is added to a solution while upholding its electronic insulation—manifests interesting properties that can be ascribed to nontrivial topological features of particle transport (e.g., Thouless’ pumps). In the adiabatic regime, the charge distribution and the dynamics of these dissolved electrons are uniquely determined by the nuclear configuration. Yet, their localization into effective potential wells and their diffusivity are dictated by how the self-interaction is modeled. In this article, we investigate the role of self-interaction in the description of the localization and transport properties of dissolved electrons in non-stoichiometric molten salts. Although the account for the exact (Fock) exchange strongly localizes the dissolved electrons, decreasing their tunneling probability and diffusivity, we show that the dynamics of the ions and of the dissolved electrons are largely uncorrelated, irrespective of the degree to which the electron self-interaction is treated and in accordance with topological arguments.

Funder

HORIZON EUROPE European Research Council

Ministero dell'Universittà e della Ricerca

H2020 Marie Skłodowska-Curie Actions

Italian National Center for HPC, Big Data, and Quantum Computing

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3