Diagnosis of solid–liquid phase transition using hopping particles in 2D dusty plasmas

Author:

Lu Shaoyu1,Huang Dong1,Ma Zhuang1,Feng Yan1ORCID

Affiliation:

1. Institute of Plasma Physics and Technology, Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University , Suzhou 215006, China

Abstract

Based on the statistical analysis of particles hopping outside the cages formed by their nearest neighboring particles, a new diagnostic of the hopping particle (HP) percentage is proposed to identify the solid–liquid phase transition in two-dimensional (2D) dusty plasmas. To demonstrate the effectiveness of the HP percentage, Langevin dynamical simulations of 2D Yukawa systems under various conditions are performed to mimic 2D dusty plasmas. It is found that the HP percentage exhibits a significant jump while decreasing the coupling parameter around the melting point, just corresponding to the solid–liquid phase transition. As compared with other traditionally used diagnostics, the HP percentage diagnostic is sensitive enough, and the dynamical information is incorporated inside. By comparing to the most widely used diagnostic of the bond-angular order parameter, the melting criterion of this HP percentage diagnostic is determined to be about 30% for the suitable time interval, which is general for the 2D Yukawa systems with different screening parameters.

Funder

National Natural Science Foundation of China

Excellent Postdoctoral Program of Jiangsu Province

National Postdoctoral Researcher Support Program

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3