Modeling magnesium surfaces and their dissolution in an aqueous environment using an implicit solvent model

Author:

Aziz Alex1ORCID,Carrasco Javier1ORCID

Affiliation:

1. Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain

Abstract

Magnesium has attracted growing interest for its use in various applications, primarily due to its abundance, lightweight properties, and relatively low cost. However, one major drawback to its widespread use remains to be its reactivity in aqueous environments, which is poorly understood at the atomistic level. Ab initio density functional theory methods are particularly well suited to bridge this knowledge gap, but the explicit simulation of electrified water/metal interfaces is often too costly from a computational viewpoint. Here, we investigate water/Mg interfaces using the computationally efficient implicit solvent model VASPsol. We show that the Mg (0001), ([Formula: see text]), and ([Formula: see text]) surfaces each form different electrochemical double layers due to the anisotropic smoothing of the electron density at their surfaces, following Smoluchowski rules. We highlight the dependence that the position of the diffuse cavity surrounding the interface has on the potential of zero charge and the electron double layer capacitance, and how these parameters are also affected by the addition of explicit water and adsorbed OH molecules. Finally, we calculate the equilibrium potential of Mg2+/Mg0 in an aqueous environment to be −2.46 V vs a standard hydrogen electrode, in excellent agreement with the experiment.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3