Utility computable modeling of a Boltzmann model equation for bimolecular chemical reactions and numerical application

Author:

Wu Jun-Lin1ORCID,Li Zhi-Hui2ORCID,Peng Ao-Ping1,Pi Xing-Cai1,Jiang Xin-Yu2

Affiliation:

1. Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

2. National Laboratory for Computational Fluid Dynamics, No. 37 Xueyuan Road, Beijing 100191, China

Abstract

A Boltzmann model equation (kinetic model) involving the chemical reaction of a multicomponent gaseous mixture is derived based on Groppi's work [“A Bhatnagar–Gross–Krook-type approach for chemically reacting gas mixtures,” Phys. Fluids 16, 4273 (2004)], in which the relaxation parameters of elastic collision frequency for rigid elastic spheres are obtained based on the collision term, and the pivotal collision frequency of the chemical reaction is deduced from the chemical reaction rate that is determined by the direct simulation Monte Carlo (DSMC) method. This kinetic model is shown to be conservative, and the H theorem for an endothermic reaction is proven. In the framework of the gas-kinetic unified algorithm, the discrete velocity method, finite volume method, and implicit scheme are applied to solve the proposed kinetic model by introducing a suitable boundary condition at the wall surface. For hypersonic flows around a cylinder, the proposed kinetic model and the corresponding numerical methods are verified for both endothermic and exothermic reactions by comparison of the model's results with results from the DSMC method. The different influences of endothermic and exothermic reactions are also given. Finally, the proposed kinetic model is also used to simulate an exothermic reaction-driven flow in a square cavity.

Funder

National Natural Science Foundation of China

National Numerical Wind Tunnel Project of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference66 articles.

1. Open-Source Direct Simulation Monte Carlo Chemistry Modeling for Hypersonic Flows

2. Kinetic theory of chemical reactions on crystal surfaces

3. D. S. Liechty , “ Extension of a kinetic approach to chemical reactions to electronic energy levels and reactions involving charged species with application to DSMC simulations,” Report No. NASA/TP-2014-218254 (National Aeronautics and Space Administration, 2014).

4. Non-Equilibrium Reacting Gas Flows

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3