Affiliation:
1. Hypervelocity Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China
2. National Laboratory for Computational Fluid Dynamics, No. 37 Xueyuan Road, Beijing 100191, China
Abstract
A Boltzmann model equation (kinetic model) involving the chemical reaction of a multicomponent gaseous mixture is derived based on Groppi's work [“A Bhatnagar–Gross–Krook-type approach for chemically reacting gas mixtures,” Phys. Fluids 16, 4273 (2004)], in which the relaxation parameters of elastic collision frequency for rigid elastic spheres are obtained based on the collision term, and the pivotal collision frequency of the chemical reaction is deduced from the chemical reaction rate that is determined by the direct simulation Monte Carlo (DSMC) method. This kinetic model is shown to be conservative, and the H theorem for an endothermic reaction is proven. In the framework of the gas-kinetic unified algorithm, the discrete velocity method, finite volume method, and implicit scheme are applied to solve the proposed kinetic model by introducing a suitable boundary condition at the wall surface. For hypersonic flows around a cylinder, the proposed kinetic model and the corresponding numerical methods are verified for both endothermic and exothermic reactions by comparison of the model's results with results from the DSMC method. The different influences of endothermic and exothermic reactions are also given. Finally, the proposed kinetic model is also used to simulate an exothermic reaction-driven flow in a square cavity.
Funder
National Natural Science Foundation of China
National Numerical Wind Tunnel Project of China
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Reference66 articles.
1. Open-Source Direct Simulation Monte Carlo Chemistry Modeling for Hypersonic Flows
2. Kinetic theory of chemical reactions on crystal surfaces
3. D. S. Liechty
, “
Extension of a kinetic approach to chemical reactions to electronic energy levels and reactions involving charged species with application to DSMC simulations,” Report No. NASA/TP-2014-218254 (National Aeronautics and Space Administration, 2014).
4. Non-Equilibrium Reacting Gas Flows
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献