Energy transfer and scale dynamics in 2D and 3D laser-driven jets

Author:

Yin H.12ORCID,Shang J. K.123ORCID,Blackman E. G.234ORCID,Collins G. W.123ORCID,Aluie H.123ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Rochester 1 , Rochester, New York 14627, USA

2. Center for Matter at Atomic Pressures, University of Rochester 2 , Rochester, New York 14627, USA

3. Laboratory of Laser Energetics, University of Rochester 3 , Rochester, New York 14623, USA

4. Department of Physics and Astronomy, University of Rochester 4 , Rochester, New York 14627, USA

Abstract

We demonstrate a methodology for diagnosing the multiscale dynamics and energy transfer in complex HED flows with realistic driving and boundary conditions. The approach separates incompressible, compressible, and baropycnal contributions to energy scale-transfer and quantifies the direction of these transfers in (generalized) wavenumber space. We use this to compare the kinetic energy (KE) transfer across scales in simulations of 2D axisymmetric vs fully 3D laser-driven plasma jets. Using the FLASH code, we model a turbulent jet ablated from an aluminum cone target in the configuration outlined by Liao et al. [Phys. Plasmas, 26 032306 (2019)]. We show that, in addition to its well known bias for underestimating hydrodynamic instability growth, 2D modeling suffers from significant spurious energization of the bulk flow by a turbulent upscale cascade. In 2D, this arises as vorticity and strain from instabilities near the jet's leading edge transfer KE upscale, sustaining a coherent circulation that helps propel the axisymmetric jet farther (≈25% by 3.5 ns) and helps keep it collimated. In 3D, the coherent circulation and upscale KE transfer are absent. The methodology presented here may also help with inter-model comparison and validation, including future modeling efforts to alleviate some of the 2D hydrodynamic artifacts highlighted in this study.

Funder

Division of Physics

Office of Science

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Division of Ocean Sciences

National Aeronautics and Space Administration

National Nuclear Security Administration

National Energy Research Scientific Computing Center

Publisher

AIP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3